

الجمسورية التونسية وزارة التعليم العلمين جامعة منوية

الإدارة الفرعية لشؤون البيداغوجيا والحياة الجامعية

مناظرات إعادة التوجيه الجامعي (دورة 2021)

الشعبة: الإجازة في علوم الإعلامية والإجازة في علوم التصرف

نوعية الاختبار: رياضيات

مدة الاختبار: ساعتان (2) من س 14 إلى س 16 ظهرا.

تاريخ الاختبار: الجمعة 26 مارس 2021

L'usage de la calculatrice non programmable est autorisé

Exercice 1: (6 points)

- 1) On considère la fonction g définie sur IR par g(x) = $x^3 3x 4$.
 - a) Etudier le sens de variations de g sur IR.
 - b) Démontrer que l'équation g(x) = 0 admet une solution unique α sur IR.
 - c) En déduire le signe de g(x).
- 2) On considère la fonction f définie sur]1; $+\infty$ [par $f(x) = \frac{x^3 + 2x^2}{x^2 1}$.
 - a) Montrer que la dérivée f' de f est définie sur]1 ; $+\infty$ [par f'(x) = $\frac{x^4 3x^2 4x}{(x^2 1)^2}$.
 - b) Démontrer que f'(x) a le même signe que g(x) sur]1; $+\infty$ [.

3)

- a) Déterminer les limites de f aux bornes de son ensemble de définition.
- b) Dresser le tableau de variations de f.
- a) Montrer que la droite d'équation y = x + 2 est une asymptote oblique à la courbe C_f représentative de la fonction f en $+\infty$.
- b) Déterminer une équation de la tangente à C_f au point d'abscisse 2.

Exercice 2: (5 points)

On considère la suite (U_n) définie par $\begin{cases} U_0 = \frac{3}{2} \\ U_{n+1} = 1 + \sqrt{U_n - 1} \end{cases}$ pour tout entier naturel n.

1)

- a) Démontrer par récurrence que $1 < U_n < 2$, pour tout entier n.
- b) Montrer que (U_n) est croissante.
- c) En déduire que (U_n) converge vers une limite que l'on déterminera.
- 2) On considère la suite (V_n)) définie par $V_n = \ln(\mathbf{U_n} \mathbf{1})$
 - a) Montrer (V_n) est une suite géométrique de raison $\frac{1}{2}$.
 - b) Déterminer la limite de la suite (V_n) .
 - c) Retrouver la limite de $\lim_{n\to+\infty} U_n$.

Exercice 3: (4 points)

On considère un établissement scolaire de 2 000 élèves, regroupant à la fois des collégiens et des lycéens. 19% de l'effectif total est en classe terminale (baccalauréat). Parmi ces élèves de baccalauréat, 55% sont des filles.

En 2020, le taux de réussite au baccalauréat dans cet établissement a été de 85 %. Parmi les candidats ayant échoué, la proportion des filles a été de $\frac{8}{19}$.

1) Recopier et compléter le tableau des effectifs suivant :

Élèves de terminale	Garçons	Filles	TOTAL
Réussite au baccalauréat			
Échec au baccalauréat		24	
TOTAL			380

Après la publication des résultats, on choisit au hasard un élève parmi l'ensemble des élèves de terminale. On considère les évènements suivants :

- $\bullet \quad G \ll L$ 'élève est un garçon » ; on note \overline{G} l'évènement contraire de G :
- ullet R « L'élève a obtenu son baccalauréat » ; on note \overline{R} l'évènement contraire de R.

2)

- a) Définir par une phrase les évènements \overline{R} et $\overline{G} \cap R$.
- b) Calculer les probabilités des évènements suivants \overline{R} ; G et $\overline{G} \cap R$.
- 3) Montrer que la probabilité, que l'élève soit une fille, sachant qu'elle a obtenu son baccalauréat, est égale à 0,57.

Exercice 4: (5 points)

Dans le tableau ci-dessous, on donne la pluviométrie moyenne mensuelle d'une ville européenne au cours des 30 dernières années.

Mois	Janv	Fév	Mar	Avr	Mai	Juin	Juil	Aoû	Sept	Oct	Nov	Déc
Pluviométrie (mm)	102	82	85	69	75	82	81	68	80	97	97	124

- 1) Représenter le nuage de points dans un repère orthogonal en prenant comme unités :
 - en abscisse : 1 cm pour un mois (numéroter les mois de 1 à 12).
 - en ordonnée : 1 cm pour 10 mm de pluie.

On se propose de tracer la droite d'ajustement de ce nuage de points.

- 2) Calculer les coordonnées du point moyen G et le placer dans le même repère.
- 3) Calculer les coordonnées des points moyens G_1 et G_2 correspondant respectivement aux six premiers mois de l'année et aux six seconds mois.
- 4) Tracer la droite d'ajustement passant par les points G_1 et G_2 , sur la même représentation du nuage de points.
- 5) Déterminer l'équation de la droite d'ajustement passant par les points G_1 et G_2 .

2